宝博国际

欢迎您的访问!

TAG标签

宝博国际

当前位置:首页 > 云服务 > 正文

乘风破浪数字化帮力地域性银行弯路超车(下)

文章出处:宝博国际    责任编辑:admin    发表时间:2021-10-09

  报告上篇主要阐述了区域性银行数字化转型的必要性、如何做好数字化转型的整体规划以及各银行各业务数字化转型的具体办法,本篇主要阐述该如何从金融科技、智能运营、数据安全、组织人才等方面入手,为区域性银行数字化转型保驾护航,以及面向未来,如何探索数字化转型的新路径。

  全球金融稳定理事会将金融科技定义为:信息技术驱动下的金融业务创新,包括由此而产生的新业务模型、新应用、新业务流程或新产品。中国人民银行印发的《金融科技(FinTech)发展规划(2019-2021)》采用了这个定义。

  金融科技核心技术已经在金融细分领域逐渐深化实践应用,未来将体现更大价值,并影响金融科技乃至金融行业的市场竞争格局。

  随着区域性银行业务线上化、场景化、智能化等趋势的发展,高并发、高可用、高性能、扩展能力、迭代能力等互联网架构的能力成为银行所关注并重点建设的内容。

  构建敏稳结合的双态IT架构,将成为多数区域性银行的选择。在实践中,对于核心关键业务,安全稳定是最重要的,因此,关键应用和核心数据必须部署在稳态的IT架构上;针对创新业务,则可以采用云计算、分布式底层技术和微服务应用技术打造分布式IT基础架构,以满足创新业务对IT基础设施灵活性、扩展性、快速迭代等能力的要求,探索敏态创新发展,实现创新引领。为了确保整个基础设施架构的安全稳定,要对稳敏两个系统进行一定的技术隔离。

  其中,云计算是区域性银行的战略转型的重点。对区域性银行而言,云计算为新一代智能化系统平台提供了稳定、安全、高效且灵活的开发、部署和运行环境,开放式混合多云是未来银行的合理配置。

  据调研显示,超过七成的区域性银行表示已积极开展了云计算领域的建设。一般而言,区域性银行首先需要构建私有云环境,将本地工作流迁移到安全、合规且完全拥有的技术框架中。其次,银行会在公有云上开展运营有助于降低运营成本,并且能够更好地接触外部生态系统。当银行考虑采用开放式混合多云方法时,其目标是让每一种环境都能处理最擅长的工作,让每个工作负载都处于合适的位置,从而降低风险,提高敏捷性。

  杭州银行(BANK OF HANGZHOU)成立于1996年9月,总部位于杭州。目前,全行拥有200余家分支机构,网点覆盖长三角、珠三角、环渤海湾等发达经济圈。在中国银行业协会发布的《2021年中国银行业100强榜单》中,杭州银行排名第29位。近年来,杭州银行紧抓科技创新机遇,加速金融与科技的融合,通过平台对接、跨业跨界合作,大力推进数字化创新和数字化转型实践。

  随着互联网金融的快速发展,为了支撑数字化转型所需的海量数据,承载业务增长带来的大量用户,杭州银行在最近几年进行了应用微服务化架构改造。但随着业务量的进一步增长,在服务部署速度、系统持续可用能力与系统扩缩容能力两方面,杭州银行面临着新的挑战。

  服务部署速度方面。传统产品上线周期长,交付环节出错率高,整体系统部署速度较慢,无法满足互联网时代银行日新月异的业务需求。因此,提高研发效率与交付效率,从而综合提升服务部署交付速度,成为了杭州银行的重要关注点。

  系统持续可用能力与系统扩缩容能力方面。由于数字化转型持续推进,加之疫情影响下消费者主场迁移至互联网,杭州银行线上业务不断增长。在微服务架构下,面对互联网营销等对扩缩容要求较高的业务,原有的系统资源支撑弹性不足,容灾能力欠缺,无法支撑数据的快速变化,无法应对用户规模的快速增长。

  综合而言,杭州银行希望建设提高服务的部署交付速度和系统容灾能力,提高系统资源使用率,为互联网营销、重大事件集中支撑等存在明显流量峰值波动的业务提供足够的弹性资源支撑和高可用性支撑。因此,基于上述需求,经过多方验证与慎重评估,杭州银行选择与谐云进行深度合作。

  谐云是国家高新技术企业、准独角兽企业,建有省市级高新技术研发中心,是世界领先的云原生技术服务公司与中国数字基础设施建设云原生软件领军企业。作为国内少数掌握底层核心技术的容器云产品及解决方案提供商,谐云依托超前的发展理念与先进的底层核心技术,致力于为企业数字化转型提供最佳解决方案。谐云产品以建好容器云—管好容器云—用好容器云为矩阵,提供云原生全栈服务,助力客户降本增效。谐云在国产化适配的道路上一路前行,持续发力智慧生态创新发展,满足未来信息技术国产化的需求。

  src=谐云与杭州银行就容器云PaaS平台项目展开深度合作,建设具有快速支撑能力的资源管理平台,并以Docker、Kubernetes等技术为基础,赋能SpringCloud微服务架构的业务系统。

  杭州银行容器云PaaS平台可划分三套环境——本地开发测试环境、本地生产环境与同城生产环境。本地开发测试环境可搭建开发管理集群、开发集群、测试集群、预生产集群;本地生产环境可搭建管理集群、业务集群;同城环境可搭建容灾管理集群和业务集群。本地生产环境和同城生产环境的业务集群规模比例为2:1。各个集群通过开放网络策略,实现由管理集群观云台统一纳管。每个环境中的集群共用一套存储服务。

  src=谐云从开发作业、应用接入、管理运维三个方面,帮杭州银行搭建了完整的覆盖全流程的PaaS平台架构,为其打造了管理大规模容器集群化的能力,以承接其整体的业务应用,既提升了系统的扩缩容能力,又节约资源、提升了现有资源利用率,同时也方便银行运维人员进行运维管理。

  开发作业方面。谐云容器云平台为杭州银行提供了CI/CD流水线工具链。平台的持续集成和持续部署功能,可以形成一套完整、规范、标准的流水线。借助流水线开发、测试、运维,能够极大地帮助IT团队降低时间成本,提升开发效率与交付效率。

  应用接入方面,业务平台可以用来承载客户的不同应用,承载其上云的集群。目前,杭州银行已经对杭银联和直销银行两个中等规模、相对独立且未涉及微服务架构的业务系统,进行了上云的实验。通过应用上云,杭州银行能够节约资源、提高资源利用率。

  管理运维方面,谐云从杭州银行从管理平台、镜像服务、监控系统三个方面,提升了杭州银行的管理效率与运维速度,也提升了其扩缩容能力与容灾能力。

  一是管理平台。为杭州银行提供了多集群的统一管理平台——观云台。观云台可以对多集群进行统一的可视化管理,提供多集群的注册、修改、运维、监控等核心功能支持,实现多集群的一站式管理。

  二是镜像服务。为杭州银行提供了容器云平台提供统一镜像仓库。业务集群和管理集群共用一套镜像服务,镜像服务统一搭建到管理集群中。用户通过持续集成平台将业务代码进行镜像构建,并将镜像推送到镜像仓库。通过镜像仓库服务,提升开发效率、业务响应速度与执行效率。

  三是监控系统。为杭州银行提供了集成多系统的一体化监控,通过容器云平台对接杭州银行已有的Zabbix监控系统,通过定期获取Prometheus指标数据,进而对集群主机、容器、应用中间件进行监控,设置了对应的告警规则。Zabbix系统可以及时地将报警信息通过邮件、手机短信等方式发送给对应的运维管理人员。借由该监控系统,杭州银行可以极大提升运维侧效率,为业务提供足够的弹性资源支撑与高可用性支撑。

  此外,为了满足银行业的监管和安全的要求,杭州银行采用了多租户隔离的模式。谐云为杭州银行不同的应用部门或研发部门间设立了不同的租户,由平台管理员划分租户权限,租户间数据不互通,从而保证开发测试与业务数据的安全性。

  谐云容器云PaaS平台助力杭州银行业务转型升级,为其微服务架构的业务系统赋能,主要价值体现在三个方面:

  一是提高部署速度。具体体现在对内提升开发效率——利用容器云的标准化交付配合平台的CI/CD(持续集成/持续部署)工具链,提升开发测试团队从源码到发布运行的效率,整体提升了3-4分钟;对外提升交付效率——通过容器交付的方式帮助客户提高现有交付效率。

  二是通过运维侧效率提升,保障业务系统提供持续可用的服务。典型场景下(4C8G的Tomcat应用环境下测试结果,占用pod资源)容器云的pod创建到启动只需要12秒;CICD流水线让应用发布的流程变的规范化、流程化。

  三是提高容灾能力,实现服务的快速扩缩,满足用户规模的快速增长需求。具体表现为充分利用容器资源调度能力,提高现有资源的利用率。

  目前,杭州银行的一期容器云PaaS项目建设进入了抽检环节,二期正在持续推进。未来,杭州银行将会与谐云加深合作,持续推进容器云平台建设,在应用上云等方面展开进一步合作,拥抱云原生。

  构建双态IT系统,AIOps已经是必然的选择。运维数字化转型已是大势所趋,实体业务的逐步线上化对IT系统的稳定与安全提出更高要求,同时随着双态IT等复杂系统的建立,如何平衡IT运维效率与成本成为区域性银行面临的重要问题,智能运维AIOps成为主要解决方案。

  智能运维AIOps,根据Gartner的最新定义,指基于大数据、机器学习等能力提取和分析IT数据,为IT运维管理产品提供支撑。目前AIOps在银行业的主要落地场景有精准告警、异常检测、根因定位和容量分析等场景,明显优化运维成本且提高运维效率;同时,基于数据的深度分析优化运维质量,值得说明的是,为最大程度发挥IT数据的价值,基于统一平台整合多维数据,以全局运营视角解读IT运维,将是未来趋势。

  某国有银行(E银行)是五大国有银行之一。近年来,E银行将数字化转型上升至集团战略层面,充分发挥金融科技特色优势,持续加大金融科技资金投入强度,在财富管理、数字化发展、绿色金融等各业务层面都取得了积极成效。

  随着E银行数字化转型进程的不断推进,银行业务系统和基础架构愈发复杂,运维数据日益增长,运维能力越来越成为E银行数字化转型的重要关注点。业务量的不断增长,为传统的IT运维带来了以下四个方面的问题:

  第一,数据治理难。随着数字化的演进和全行改革的深入,E银行业务量增多,数据规模急剧扩大,且数据种类与数据结构愈发复杂多样,由于数据标准不统一,因此数据质量较低;且E银行数据分散在各应用处、集中度不高,数据之间存在孤岛现象,数据可复用能力欠缺。

  第二,发现问题难。E银行在过去便建立了运维系统,但随着该系统在业务中的不断实践,出现了不少问题。首先,监控不全面,缺乏对整体业务运行状态的监控;其次,原有运维监控系统采用固定阈值告警,误报漏报率高;另外,原有运维系统发现问题较为被动,缺乏趋势预测能力,无法在用户受影响之前及时识别问题,严重依赖运维人员经验,导致运维成本高、运维效率低。

  第三,根因定位难。E银行原有运维系统和工具基本为事后统计分析,缺乏实时分析能力,缺乏以业务指标驱动的根因分析能力、场景化的相关性分析能力和告警、指标、日志等多维数据的交叉分析能力,对运维排障能力的提升作用很有限,导致运维故障处理能力较低。

  第四,运营分析难。E银行传统运维系统主要依赖人工经验、通过报表来分析数据,缺乏智能化的手段进行动态数据分析;过去的运维数据分析主要从运维角度而从非业务视角出发,导致对数据的分析较为片面、落地性不强,数据价值挖掘不充分,无法为综合运营提供保障支撑。

  除此,E银行还有一些定制化的需求。E银行部署了云平台,不同于传统技术架构,云平台对运维侧提出了更多需求,如与态势感知可视化工具进行深度结合,以识别并解决云上安全风险;另外,E银行对于内部安全能力也有要求,随着业务量的增加,内部违规操作的几率增加,E银行对内部人员违规操作的检测排查提出了新需求,对安全数据的整合能力成为了E银行重要的关注方向。

  综上,借助一定的手段和方式,对客户的IT运维数据实现全量的集中化管理,实现数据实时处理、智能分析和预测,进行多维度高效根因定位,实现运维侧的全面升级,成为E银行数字化转型的重要诉求。基于此,E银行选择与擎创科技进行合作,就智能运维AIOps展开深度探索。

  擎创科技2016年成立于上海,是国内首家智能运维AIOps落地解决方案的供应商。擎创科技专注于以AI赋能运维管理,激活运维数据智慧,助力客户数字化转型。目前其客户群已覆盖银行、保险、证券、制造、能源及交通运输等多个行业。

  擎创科技基于自身强大的大数据能力、流批一体处理能力和AI算法能力,从数据治理层(包括数据采集、数据处理、数据存储)、运维应用层以及运营决策层多个层级,为E银行提供了智能运维夏洛克AIOps全面解决方案。

  数据是场景建设的基础。因此在数据治理方面,擎创为E银行构建了集成数据采集、数据处理和数据存储多种功能的数字运维中台。

  首先是多源数据采集。夏洛克AIOps具备数据湖、APIs、客户数据等多种数据源的数据集中采集能力,覆盖指标、事件、日志等多种运维数据。无论是来自于工单系统、监控系统还是日志平台,均可作为可配置的数据源融入平台。此外,数据采集会对接不同体系如容器云、K8s等。其次,数据采集完成后,需要进行数据处理。擎创科技帮助E银行,在两大技术栈Flink和Spark的基础上做了抽象,使二者合为一体并形成数字运维中台,使得平台跨越流批处理的专门开发,并做了一些可视化处理,实现数据标签化、体系化、规范化,并使得数据可通过拖拉拽实现基本处理与一体化查询分析。数据处理完毕后,需对经过处理的数据进行数据存储。擎创科技为E银行的运维数据存储提供了相应的技术栈和配套软件,同时也运用大数据工具,帮助E银行提升运维数据存储能力。

  综合而言,擎创科技帮E银行构建的数字运维中台,为智能运维场景的建设提供了大数据处理、流批一体处理和AI算法平台三方面服务,奠定了E银行智能运维场景建设的基础,同时也持续提升了其运维数据的质量和治理水平,解决了E银行数据治理难的问题。

  在数字运维中台的基础上,夏洛克的运维应用层结合数十种算法,帮助E银行灵活构建了多样化的智能运维场景,产出其需要的分析结果。智能运维场景包括告警自动抑制、故障场景发掘、指标异常检测、日志异常检测、综合根因定位、业务多维分析、容量分析预测等,主要抽象为四大产品应用——告警辨析中心、指标解析中心、日志精析中心和日智速析专家。

  告警辨析中心以机器学习算法为驱动,对海量的告警事件进行降噪和关联分析,辅助E银行实现问题预测发现以及根因定位;指标解析中心基于交易异常、指标关联、拓扑集成、根因推荐能力,帮E银行迅速发现及预测指标的异常波动,并且判定指标间的关联关系,辅助根因定位;日志精析中心具备多样化开箱即用模板及智能分析能力,协助E银行全面分析数字化业务整体状况,提升了其故障根因定位、日志审计、异常检测等运维能力;而日智速析专家则实现了将海量日志聚类到肉眼可读的数量,智能识别日志发生规律,分析日志异常并智能告警,从而助力E银行无需了解日志结构即可发现问题、定位根因。通过四大应用的构建,E银行可快速发现异常并定位根因,从而提升运营效率。

  src=未来,在智能运维的基础上,擎创科技还将辅助E银行实现了从智能运维到智能运营的跃升。擎创科技以全局运营视角解读IT运维,在打通E银行全域数据的基础上,帮其个性化定制专属运营决策中心,精准、实时、动态地展现系统运行状况,并通过对数据价值的提炼分析,有效支撑运营决策,彰显运维对业务的影响力。

  通过夏洛克AIOps综合解决方案的实施,擎创科技帮助E银行解决了多种问题,实现了高效智能运维:

  第一,提升了数据质量和数据治理能力。通过采用数字运维中台进行数据治理和运维数据集中化管理,打破了数据壁垒,极大地提升了数据标准化程度,提升了数据质量,为后续数据分析运用提供了保障支撑。

  第二,提升了问题发现的能力。E银行通过部署夏洛克AIOps智能运维平台,基于四大智能运维应用,降低了误报率,减少了一线人员的工作量,且极大提升了提前发现异常和容量预警的速度。

  第三,实现高效的根因定位。E银行利用交易类指标异常检测以及与多种基础架构指标异常做相关性分析,结合拓扑相关性以及日志异常模式排查,实现了分钟级别定位故障源的高效综合排障。

  第四,提升了运营分析能力。通过智能运维建设,E银行实现了对告警、日志和各项指标的全方位管理和智能化分析,运营风险降低约70%,运营效率提升约6倍,数据中心整体SLA(服务水平)得到了极大提升。

  与大型银行相比,区域性银行在资金投入、金融科技人才等方面存在不足,因此,在技术开发和技术应用方面,要与大行有所区别。区域性银行应本着实用主义原则,重点强调技术在业务应用中的价值,而不必囿于大规模投入对底层技术的研发。

  根据调研显示,目前核心银行系统主要以自建为主,比如交易系统。对于新兴的数字化技术,大部分区域性银行以合作共建为主,引进成熟的技术方案,并在技术引进过程中深度参与,以最终实现自主可控。目前金融科技合作共建方面,主要的路径有两种:

  一是与有实力的大厂形成战略合作,提供数字化转型技术升级的综合性解决方案,包含技术、行业知识(如风控模型)、方法论、资源等。区域性银行在战略合作过程中,应特别重视核心系统的自主可控,避免形成过度依赖,同时要注意数据合规等问题。

  以上海农商行为例。上海农商行数字化转型起步比较晚,金融科技基础薄弱,为把握数字化转型红利,与腾讯形成战略合作,引进腾讯一整套的开发平台,包括底层的技术架构、中间件以及数据治理方案等,并接入腾讯生态,迅速构建数字化能力。在合作过程中,形成自有的方法论及自主可控的核心技术。

  二是针对不同数字化场景,引入成熟的技术方案。区域性银行则应避免进入过度技术创新误区,要注重技术与数字化场景的结合,应该以成熟技术的引进、消化吸收为主,注重数字化应用的实际落地效果。未来,在政策允许的情况下,区域性银行可以考虑率先尝试SaaS服务模式,通过云化进一步降低技术应用成本。

  以风控场景为例。金融科技风控技术已经趋于成熟,且在国内多家同业机构实施落地后已经显现效果,如客户风险画像、信息反欺诈、中小企业/零售评分、额度测算、押品管理与估值、贷后预警等。对于这些领域,区域性银行可考虑采用跟随式创新的策略与思路,积极学习同业经验、合理评估自身实际、充分探讨必要程度,以有效提升自身风控工作能力。

  银行可引进实时音视频技术(RTC)、编解码等技术,为银行营销、运营、风控等多流程,理财、零售、对公等多业务场景赋能。以实时音视频技术为例,基于实时音视频能力,银行可以实现视频营销、视频面签、金融双录等远程业务办理,在满足金融监管需求的同时,解决业务渠道不足、客户体验不佳等问题。银行应基于具备多场景、高性能、多功能优势的音视频技术,结合云技术、AI技术等其他技术,构建视频中台,以最终支撑各业务的实施。

  四川天府银行自2001年底成立以来,积极探索中小银行改革发展之路,在中国银行业创建了多项标杆,现已建设成为有国际金融背景、跨区域、有特色的现代精品银行。截至2020年末,该行总资产约2250亿元,资产规模位居四川省内城商行第二位。近年来,四川天府银行通过开放合作不断搭建平台和整合资源,持续加大科技创新投入力度,加强金融产品和服务创新,围绕特色银行建设加快创新转型发展,逐步形成了以人才+战略+产品+IT为主要支撑的核心竞争力。

  随着金融科技的发展,数字化转型的不断深入,加之疫情摧化,天府银行获客渠道与业务办理模式亟待提升。

  消费模式的转变,加之疫情催化,银行传统获客渠道急需拓展。传统上,针对理财业务,银行都是以客户经理为中心,进行营销获客。随着消费者消费模式的转变与疫情的催化,传统以客户经理为中心,局限于线下网点拓客的方式已经逐渐效用不足,无法充分利用网点资源、且客户覆盖面有限。为了充分利用网点资源、扩大客户覆盖面,天府银行需要寻求手段赋能客户经理,扩大客户经理展业范围,以实现理财业务的高效获客。

  银行传统业务办理模式导致客户体验不佳,服务模式亟待升级。消费者消费偏好转变,线上消费逐渐成为重要趋势。传统叫号机+玻璃幕窗+柜员的业务办理模式,已无法实现全天候、全渠道的客户服务价值理念,线上办理模式缺失、线下办理便捷度不足,导致客户体验不佳,整体无法满足天府银行的客户运营需求。加之新冠疫情的影响,天府银行各业务离柜趋势愈发明显,线上不见面业务办理的方式被进一步催化。因此,革新业务办理模式,提高业务实时性,以提升客户体验,成为了天府银行的重要诉求。

  金融监管与鼓励与合规的要求下,风险提示与记录留痕成为重要需求。随着线上化业务的不断深入,欺诈、篡改等风险愈发显著,内容可追溯愈发重要,为了满足业务需求,风险合规成为天府银行必须关注的重点。另外,金融强监管的进一步收紧,更要求天府银行在开展非接触式银行的建设时必须注重风控与合规要求的满足。因此,在金融监管的鼓励与合规部门的要求下,满足风险提示与记录留痕的需求成为大势所趋。

  基于上述问题、需求与趋势,四川天府银行在经过审慎筛选评估后,选择与声网就视频银行及双录解决方案展开合作,以同时满足银行拓展客户覆盖面、提升用户体验和符合监管合规的多种需求。

  声网Agora成立于2014年,是全球实时互动云服务RTE-PaaS(Real-time Engagement Platform-as-a-Service)开创者和领导者,已赋能了十余个行业,实现了100多种场景。针对银行业,声网基于实时音视频技术,为其数字化升级全面赋能,覆盖视频面签、在线理财、金融贷款等多个场景,通过电子渠道来延伸金融服务,助力银行业转型升级,为银行带来更多收益。

  基于自身强大的视频云能力与混合云部署能力,声网为四川天府银行提供了多场景、多功能、高性能的一站式视频银行解决方案,既满足了获客需求,又提升了客户体验。

  src=基于视频银行多场景、多功能、高性能的优势,声网帮助天府银行极大地提升了客户体验。

  声网携手四川天府银行联合打造的视频银行覆盖多个业务场景。视频银行覆盖客户服务、理财业务、对公业务、零售业务等多种业务场景,极大地拓展了客户覆盖面,同时满足了客户足不出户即可办理业务的需求,提升了客户体验。银行业务咨询服务方面,声网为四川天府银行提供了基于音视频能力的咨询服务平台,帮助四川天府银行提高了业务咨询的服务质量。理财业务办理方面,在疫情催化下,声网为天府银行提供了理财视频双录、视频面签等理财业务场景下的服务,客户可以随时随地购买银行理财产品,既便利了客户、又提升了业务办理效率。除此,声网提供的产品正在逐渐向对公、零售场景扩展,帮助天府银行构建了移动展业外出对公开户法人视频认证、收单商户进件视频尽调等对公场景产品以及个人贷款授信合同视频签订、个人手机银行人脸识别补充认证等零售场景产品。

  声网视频银行具备多功能。声网视频银行业务功能丰富、集成方便。该方案集成了实时音视频、屏幕共享、文档共享、文件标注、实时消息、录制存证、AI增强等丰富功能,支持1080P 60fps超清视频、48kHz全频带音频编码。且声网视频云中台开放架构支撑产品持续创新与系统动态扩容。

  声网视频银行有强大性能。连通率高,声网音视频连通率能达到99.9%以上;稳定性强,在偏远地区或信号相对较弱的区域,也能保障音视频的稳定性;超低延时,优秀的弱网对抗能力,保证在70%视频数据丢包情况下,音视频通线% 音频数据丢包情况下,音频通话流畅。

  其中,在理财业务场景下,声网为天府银行提供了视频营销方案底层能力,赋能客户经理,满足银行获客需求。

  声网视频底层能力支持业务侧营销解决方案赋能客户经理,支持客户经理与客户进行一对一或一对多的音视频互动,通过客户经理与客户间的线上交互开展理财等金融活动,拓宽了天府银行多项业务的办理渠道,极大地突破了理财业务办理的区域、时间限制,助力了四川天府银行的营销渠道创新,从而实现了高效获客。

  在进行线上视频业务办理时,声网为天府银行提供了金融双录的功能。通过音视频同步录制并存证,助力视频见证等业务办理,还原真实的业务场景,保障了数据的安全可靠。

  除此,声网为天府银行提供了混合云部署方案,实现客户内网与内网,内网与外网多种交互场景,充分利用银行内网环境的安全性、稳定性以及外网的高质量加速能力。出口安全配置方面,天府银行仅需在出口防火墙上配置访问外网的 IP+端口号,对应防火墙策略保障在尽量少的端口情况下实现内外网安全隔离及访问;媒体流方面,终端设备在外网的,媒体流要经过互联网传输,终端设备在内网的,媒体流只在内网传输,内网录制媒体流从内网部署的媒体服务器拉取。通过该部署方案,天府银行实现了内网终端信息可保障、外网终端传输效果可保障,最终确保了多场景金融业务能力的安全性与可用性。

  通过一站式视频银行解决方案的部署,声网帮助四川天府银行实现了以下三个方面的效果:

  第一,实现高效获客。视频营销的实施,适应了消费者消费模式的转变,有效缓解了疫情带来的业务渠道不足问题。通过赋能客户经理,实现了跨区域业务的开展,帮助天府银行拓展了营销渠道,拓宽了客户覆盖面,助力了天府银行营销渠道的创新,极大地提升了营销的客户转化率。

  第二,提升客户体验。视频银行的开展,基于覆盖多种场景、功能丰富和性能强大的优势,满足了天府银行跨时间、跨区域的客户服务价值理念,提升了业务办理的实时性与业务办理质量,满足了客户足不出户办理业务的需求,最终极大地提升了客户体验,从而提高了银行品牌度与客户粘性。

  第三,满足监管、合规与安全需求。金融双录的功能,保障了数据的安全可靠,满足了金融监管与合规需求,同时也保障了金融业务的可回溯性;而混合云的部署方式,实现了内外网安全隔离,最终保障了业务能力的安全。

  银行是基于大量信息和数据设计金融产品、提供金融服务的组织,同时,银行在日常经营过程中也会产生大量的信息和数据。数据是落地数字能力的基础,而打造数据能力是关键。

  数据能力建设全链路包括数据采集、存储、计算、分析、挖掘、开发、治理等,如何合规地获取数据、做好数据存储与管理、深度挖掘数据价值,是银行实现数据资产化需要主要思考的问题。

  数据治理是挖掘数据价值的基础。数据治理包括数据质量管理、元数据管理、数据标准管理、主数据管理和数据资产管理等。在这一系列过程中,能够通过相关规范并结合工具应用,实现确保数据质量、数据标准和数据的一致性等目标。数据治理工作可依托数据中台建设开展落地。

  数据分析成为价值挖掘核心能力。随着数据应用的持续深入,传统大数据技术渐趋成熟,数据分析趋于移动化、智能化,以满足持续迭代的数据价值挖掘需求。

  数据分析加快渗透银行业务场景,为满足随时随地的数据分析需求,移动化趋势逐渐明朗。PC端主要满足固定办公场景,但面向复杂灵活的移动场景持续涌现,比如出差场景、线下服务场景等,在快速响应正在成为核心竞争力的背景下,实时的数据分析正在成为迫切需求,移动端数据平台成为重要抓手。BI商业智能作为大数据应用的重要一环,赋能业务决策效果直观,而且轻部署ROI明确,已落地银行多业务场景,也将是最先实现移动化的数据分析系统,将数据分析能力 装入口袋。

  同时以AI应用为核心的增强分析能力正在成为数据分析的重要能力要求。增强分析能力包括三个方面:基于AI算法,能够在数据准备和数据探寻等数据分析环节中实现流程的自动化,提升效率;通过AI技术自动进行关联网络分析,通过智能化的数据探寻,实现脱离人为经验的数据洞察;基于内置的自然语言识别能力,用户通过文字和语音的形式即可查询数据分析结果。

  数字化浪潮之下,数据驱动业务增长的价值渐成共识。银行业是以数据为支撑的行业,为抓住数字化转型红利,国内银行无一例外高度重视数据业务的应用。BI商业智能是大数据应用的重要一环,通过对企业业务数据进行展示、分析和挖掘,为企业业务决策提供指导,是释放数据价值最重要的系统之一,应用需求持续攀升。

  由于数字化转型的阶段不同,区域性银行的BI建设进程各有差异,率先开展数字化转型的银行已落地BI应用。为适应新形势下的数据分析需求,区域性银行对BI商业智能的需求也在持续迭代。

  F银行为满足管理层等人员的数据分析需求,部署了PC端数据大屏等BI工具。但随着金融服务线下场景趋多,金融移动化趋势逐渐明朗,移动化办公理念逐渐成市场新需求。F银行顺应行业发展需求,构建全行级别的移动端办公生态,在移动端建设过程中,面临的主要需求与挑战体现在以下三个方面:

  从数据整合层面看,数据口径差异大。单一场景、单一部门的数据价值度有限,实现数据价值最大化需要整合不同场景、不同部门的数据,基于更全面的数据分析以支撑业务决策。但数据来自多个数据统,数据口径存在差异,基于单一平台接入并整合数据面临巨大挑战。

  从业务赋能层面看,指标体系梳理难。数字化转型的本质在于数据赋能业务,因而银行不仅需要成熟、易用的BI工具,还需结合对银行业务场景的理解构建分析指标和模型,以深度挖掘BI商业智能应用价值潜力。但F银行管理人员所涉及的数据众多,数据杂乱分散难以整合分析,如何呈现有结构、有分析逻辑的数据价值成为重大课题与挑战。

  从全行联动层面看,内部管理闭环难。构建全行级的移动端,实现银行内部跨部门的联动管理,对于数据分析驱动业务价值最大化至关重要。但F银行原来单一业务、单一部门的数据分析各自独立,无法形成管理闭环。

  为强化数据分析驱动决策,F银行与帆软软件有限公司合作,打造移动端工作台生态产品,满足移动化办公数据分析需求,赋能银行更多业务场景。

  帆软软件有限公司(以下简称帆软)成立于2006年,是中国专业的大数据BI和分析平台提供商,专注商业智能和数据分析领域,致力于为全球企业提供一站式商业智能解决方案。帆软重视深耕行业,在银行业已与300+银行客户开展深度的合作与应用。帆软在专业水准、组织规模、服务范围、企业客户数量上均为业内前列,先后获得包括Gartner、IDC、CCID在内的众多专业咨询机构的认可。

  F银行在PC端BI平台的基础上,集成帆软移动端工作台生态产品,打造移动工作台。帆软移动端工作台架构方案,针对不同银行业务角色打造自上而下的行长战情室-业务条线-分支行数字工作台,同时基于推送功能实现纵向考核压力下放,从而构建全行级分析联动生态。

  帆软移动端工作台方案的关键主要包括三个方面,一是基于单一平台整合全行多数据源,二是立足指标体系打造个性化移动端平台,三是实时推送压力下放实现工作台分析联动。

  首先是基于单一平台整合全行多数据源。数据是BI驱动业务决策的基础,构建全行级BI,基于全行数据挖掘更大价值,需要统一数据标准,并对全行数据进行整合共享。数据的治理主要由区域性银行主导,帆软主要负责数据接入并整合。

  src=然后是打造个性化移动端平台,核心在于构建指标体系。针对行长、分支行长、业务人员等不同角色,打造个性化移动端平台,本质在于针对不同角色数据分析需求构建个性化的指标体系,最终在不同移动端工作台上呈现不同的指标。比如对于银行业务,行长更为关注当年重点业务的业绩指标及完成情况、历史对比等宏观分析结果;而分行长重点关注风险、交易等明细数据并及时预警,如大额动帐明细、收单商务明细等,需要根据行长、分支行长的不同需求来设计不同指标体系。

  在构建更为细节指标体系过程中,指标体系与业务场景的贴合程度直接决定了数据分析的价值。帆软深耕银行业,基于300+银行客户的合作经验,已经形成营销、风控、客户运营、财富管理等关键金融场景的通用指标体系。在通用指标体系的基础上,帆软与F银行内部经验业务人员合作,根据F银行具体业务需求,优化银行指标包,解决银行数据杂乱问题。

  同时基于推送功能实现压力下放,实现工作台分析联动。移动端工作台消息推送支持设置定时频率、触发条件等推送信息,定时推送相关经营日报、风险预警、动账提醒等内容,实时数据通知和预警,管理层可以随时随地发现问题,及时向下输出管理压力,促进业务达成。

  以行长站情室为例,行长战情室指标体系主要包括三个模块,分别为综合诊断模块、数据呈现模块与绩效管理模块。通过综合诊断模块,行长可在宏观层面了解全行指标,并支持点击跳转到相应指标块的功能;数据呈现模块通过对行内几千条数据的结构分级整理,使其符合行内分析逻辑,满足行长分析需求;通过绩效管理模块,行内领导可以横向对比同业水平,纵向管理条线分支行,并且能够对异常问题进行压力下放动作, 形成不同工作台之间的分析联动。

  需要说明的是,由于数据合规问题,面向F银行的移动端平台需要进行私有化部署,集成在银行APP、企业微信、OA系统等常用办公软件,同时帆软提供数据安全工具,比如个人信息脱敏工具,配合银行的网络安全措施,满足银行数据合规要求。

  一是以数据驱动决策,赋能更多业务场景。基于移动端BI平台的建设,数据分析可以赋能更多复杂灵活的移动业务场景,比如出差场景、上门服务场景等,配合PC端BI平台,深度赋能更多业务决策;

  二是打造联动分析生态,优化全行层级决策。不同层级的用户对象可以通过工作台进行业务联动,并且可以留存历史信息,使工作内容更为立体化,业务分析逻辑更具连贯性。

  三是提升数据分析效率,降低科技运营成本。单一工作台整合全量数据,大大缩减用户申请-业务搜集-科技取数-整理汇报的数据链路,减轻用户查看数据的操作成本,提高用户数据查看效率;同时业务科技部门可提前储备所需数据,无需再花费大量时间处理领导临时的数据请求任务。

  在实体经济高速增长的市场环境下,追求规模是银行业普遍的战略重点。在经济增速放缓的新常态下,运营转型议题被提升到一个更显著的重要水平。

  运营转型是随着市场环节、客户需求等因素不断创新和发展的过程。在数字化、智能化时代,运营边界重新被定义,以客户为中心,运营可以划分为三个体系,分别为接触层、交付层、管控层。

  src=运营转型的核心是提升运营效益,新思路兴起,数字化是最重要的效益杠杆。我们认为,管控层作为神经中枢,转型周期长且战略风险高,现阶段数字化赋能最大的收益在两个方面,一是接触层的全渠道优化,提升客户体验;二是交付的流程自动化,提升运营效率。

  随着数字化的推进,银行客户的行为模式和期望正在发生根本性的变化,全天候、全渠道的一致性体验成为成就客户体验的关键。满足全天候、全渠道的一致性体验,需要从两个维度着手进行数字化能力建设:一是实现渠道协同,二是优化渠道体验。

  基于远程银行落地渠道协同。在实现渠道协同方面,更为注重渠道互通与自动化切换,即客户在任一渠道触点开启流程,可以随时切换至其他渠道完成完整的流程操作。在银行数字化转型和疫情的背景下,远程银行成为银行落地渠道协同的重要抓手,以远程银行为渠道中心,在实现全天候、全渠道的基础上,实现渠道协同。

  《中国银行业客户服务与经营规范》明确远程银行的定义:单独组建,由客服服务中心转型形成,具有组织和运营银行业务职能,借助现代化科技手段,通过远程方式开展客户服务,客户经营的综合金融服务中心。远程银行的渠道运营最大优势是渠道一体化。

  src=载体多元。远程银行在渠道建设上已经从传统的单一语音渠道转变为短信、微信、在线、APP、智能机器人、微博、文本、短视频、网络社交媒体、音频等多媒体载体提供远程综合金融服务;从传统意义的我问你答服务咨询,到你说我做、我说你做等形式更加灵活的业务办理,依托于数字化智能技术,协助客户完成各类银行交易、顾问式投融资理财与增值服务等业务办理需求。

  渠道协同。促进线上线下场景深度融合,创造更多的业务协同点,构建远程银行与银行网点联动、客户经理等线下服务与远程银行协同的线上+线下数字化经营体系,加强与分支行营销和客户服务触点的合作,为客户提供全渠道、一体化、全方位的服务体验。

  G银行是某省首家区域性股份制商业银行,基于基础能力、中台能力、渠道能力、销售能力和生态能力五种能力,构建了全方面、多层次、一体化的数字银行体系布局,夯实数字化转型的基础。近三年来,G银行投入IT建设的资金已超过15亿元。

  近年来,数字化转型成为银行的重要议题。G银行作为区域性银行,在自身区域化限制与疫情催化影响下,更需要在渠道拓展、客户运营、风控合规等方面进行转型升级。

  渠道拓展方面。G银行于2016年起上线年起初步部署视频业务,效果在疫情中得到了有效验证,但功能相对不够完善。新冠疫情爆发以来,客户消费模式与消费主场发生转变,传统线下拓客渠道及原有线上渠道已无法再满足该银行获客需求。因此拓宽获客渠道、开拓服务半径、提升触客效率成为该银行的关键需求。

  客户运营方面。传统柜面交易、贷前信息核实、授权等业务场景多为线下人工操作,办事效率低、客户体验不足,非接触式服务的新业态越来越为银行客户所接受。因此,简化业务流程、提高服务效率、优化客户体验成为了区域性银行关注的重心,升级丰富业务场景、强化客户运营成为了G银行的重要诉求。

  风控合规方面。随着数字化转型的深入、业务线上化的推进,G银行衍生出安全、合规、风控方面的需求。远程服务的开展,全渠道的对接,使得身份欺诈、抵赖、篡改等网络安全问题与日俱增,反欺诈、防抵赖、防篡改愈发成为该银行的重要诉求。

  综合而言,基于以上拓展获客渠道、丰富业务场景、升级风控合规的多方位需求,G银行希望搭建一个架构先进、扩展性能强、客户体验好、安全可靠的视频银行平台,支持远程银行多种业务场景作业,实现降本增效的总目标。经过谨慎考虑与验证,G银行选择与网易云信展开视频银行平台搭建方面的合作。

  src=网易云信是网易智企旗下融合通信云服务专家,稳定易用的通信与视频 PaaS平台,可以提供 IM 即时通讯、5G 消息平台、一键登录、信令、短信与号码隐私保护等通信服务,音视频通话、直播、点播、互动直播与互动白板等音视频服务,视频会议等组件服务,以及内容传输、安全检测两大问题一站解决的「安全通」产品。

  依托网易24年IM以及音视频技术,网易云信为金融行业客户提供全面的视频营业厅解决方案,覆盖远程面签、视频双录、金融公证等场景与功能,此外还提供协同办公等场景化解决方案。目前网易云信已成功服务于中国银行多家分行、中国工商银行多家分行、南京银行、长沙银行、台州银行、无锡农商行、广东华兴银行、泉州银行、中国人寿保险和永安期货等多家知名金融机构。

  以拓宽覆盖渠道为目标,网易云信为G银行提供接入多种渠道的视频银行解决方案,覆盖渠道包括超级柜台、小程序、手机银行、H5、对公APP等。通过大范围的线上化业务运作,在一定程度上突破地域和时间的限制,拓宽银行的触客渠道,提升银行从触客到获客的转化效率,扩大银行的服务半径。

  网易云信为G银行提供了覆盖多场景的视频银行方案,涉及超级柜台端(涉及柜面交易类)、贷款用途核实、贷前调查信息核实、视频见证类业务、集中授权类业务,以及微信生态远程视频等场景,从而为交易类、账户服务类、零售业务类、理财类、信贷类、信用卡类、对公业务类等业务提供支持。

  视频银行的大范围线上化部署,核心在于强大完善的风控合规支撑。网易云信在帮助G银行实现业务线上化的同时,部署方式采用业内首创的双通道混合云,通过多重身份验证、防抵赖、录像防篡改等措施,满足该银行的安全、合规、风控要求。

  基于G银行的内部需求与监管的外部要求,网易云信采用业内首创的双通道混合云架构进行部署。由于风控合规的要求,针对交易类、账户管理类等风控级别高的业务采用私有云实现,保障客户数据、业务数据、录象数据的安全可控;针对视频交互两端用户均在互联网的场景,采用公有云音视频服务提升交互体验。同时通过统一调度功能实现双通道的统一调度。

  针对核心客户的身份认证,视频银行采用人脸识别、活体检测、联网检查、二次人脸识别、二次联网核查、视频面对面、核身问题等多重身份核验机制实现人证合一验证。

  src=风险控制方面,视频银行通过视频交互过程中的内容识别实现在框、离框提醒、第三方人员入镜提醒以及遮脸、捂脸、戴口罩提醒。

  此外,G银行在远程业务办理过程中同步进行录像录制,同时在业务办理过程中采用相关措施实现防抵赖与录像防篡改。防抵赖措施包括:通过加签后的数字签名或电子签名实现防抵赖;通过业务确认由客户完成实现风险转嫁。录像防篡改包括:水印——在录像的过程中,为每帧图像添加一处或多处时间水印和时间戳,配合视频图像内容、音频内容,以此说明内容的连续性与业务办理的时间;录像文件生成加密——录像文件生成时支持商密和国密的加密。

  网易云信视频银行平台解决方案,在渠道拓展、客户运营、风控合规三个方面,助力G银行数字化转型,最终实现了降本增效的目标:

  一是拓宽触客渠道,提升了客户满意度。让用户足不出户就可以办理90%左右柜面非现金业务,大大提升用户办理银行业务时的体验,用户满意度大幅提升。

  二是实现多种业务场景的覆盖,提高客户运营质量。具体而言,混合云的部署,可以在符合监管要求的前提下,让客户得到更好的音视频体验。正常网络环境下,网易云信视频银行平台的互动视频开画时间2 秒,有效接通率达到95%以上,网络延时小于 200ms,有效保障了业务办理的流畅性。

  三是提升风控合规水平。网易云信视频银行解决方案双录可靠性能够达到99.9%,保证了线上服务可靠性。

  未来,G银行将继续横向与纵向拓展与网易云信的合作,在渠道对接、场景建设、风控合规三个方面进行深度合作,围绕线上化、数字化、智能化三个阶段,立足服务智能化和能力开放化两个方面,以重点突破带动行内数字金融的全局发展。

  基于智能化手段优化渠道体验。如今,在所有零售企业中(包括银行),客户都希望获得简单、直观、线下线上无缝交互体验,差强人意的客户体验给银行业造成切实影响。区域性银行需要对客户旅程中各个节点进行评估,分析节点的必要性和节点关联性,在兼顾成本与效率的同时,借助科技工具对节点进行优化,提升客户体验。

  对于线上渠道,核心通过渠道智能化建设优化渠道体验,以满足客户多样化需求,主要手段包括智能客服、自动客户识别、智能知识库、多渠道交互引擎等。其中智能客服在区域性银行中已具有一定的应用成熟度,覆盖多场景多渠道,比如银行业务咨询、业务办理、业务投诉等,为提升客户体验赋能。

  对于线下渠道,打造智能化网点的升级工作已逐步展开,VTM、智能机器人、互动触屏、网点移动终端(PAD)、自动业务处理设备(如自助发卡机)、自助柜员等层出不穷的设备创新和概念创新持续赋能智能网点建设,提升线下服务效率,优化客户体验。

  银行业是信息密集型产业,一向走在技术应用的前列。传统银行服务在对外客户体验和对内服务管理方面都面临着一些挑战:

  对外客户体验方面。第一,由于银行业务量庞大,客服咨询及外呼通知等需求大,导致客服人力工作成本较高,因此,如何降低人力成本与运营成本,提高服务效率,至关重要;第二,随着普惠金融的发展,面向老年人和农民群体的服务越来越受到重视,传统的单一的普通话交互已无法满足多样的客户需求,如何实现方言交互成为了银行发展的重要关注点。综上,满足客户多样化需求,提升客户体验,是银行数字化发展的关键需求。

  对内服务管理方面。出于较高的服务质量和合规性检测要求,服务管理是银行员工管理的重要环节。然而传统的人工质检抽样覆盖率不足、培训效益不高,无法有效提升员工服务水平。因此,提高质检覆盖率,提高员工培训效果,是银行发展的另一重要诉求。

  总体而言,提高运营效率,降低运营成本,实现降本增效,是银行数字化发展的重要趋势。

  思必驰是国内专业的对话式人工智能平台公司,拥有完全自主产权的全系列语音及语言交互技术,从感知到认知,形成人机智能交互的完整技术链条。核心技术包含语音识别、语音合成、语音识别++、语义理解、智能对话五大方面。

  重庆某银行拥有客户约2900万、银行网点数量众多且遍布城乡。近年来,该行一方面致力于创新发展,打造自主可控、智能高效、引领发展的金融科技平台;另一方面,面对众多的中老年客户、农村地区客户等本地客户群体对方言服务的需求,寻找智能化服务方案。针对该银行的客群特点,思必驰为该行建立了普通话和重庆方言自适应模型,并提供了全套语音识别、TTS、声纹识别、标注训练、日志运维解决方案,包括对外智能客服系统和对内智能辅助系统,协助该行构建功能完整、灵活高效的智能语音中台,覆盖全场景、全渠道服务触点。

  为应对多样化的客户需求,思必驰基于其方言识别技术,为该银行打造了集语音交互、IVR机器人、文本机器人为一体的智能客服系统以及线下智能柜机系统,提升了客户体验。

  方言识别技术。针对该银行复杂的客群语言环境,思必驰在语音识别技术方面完成重大突破:在普通话、四川话单一语种识别的基础上,可支持普通话+四川话双语种混合识别,并获得技术专利。通过该技术,用户无论使用普通话、四川话还是混合口音,都可实现即时识别。该项方言识别技术能够助力消弭数字鸿沟,推动普惠金融发展,为农村地区及中老年用户提供更精准便利的金融服务。目前,该银行基于思必驰对话式AI技术推出的支持重庆地方方言的智能银行服务已被纳入国家试点。

  src=IVR机器人。思必驰为该银行业务场景量身打造的智能IVR系统,可快速实现100多种银行业务意图,并能够完成查询余额、交易明细等多种任务型业务办理,突破传统语音导航限制。同时,该智能IVR系统在交互过程中更贴合实际生活场景,查询方式更口语化。比如:用户在查询交易明细时,无需按规则、按顺序说出查询条件;用户在报银行卡号时,智能IVR系统会自动对卡号位数、种类等进行准确性核验,并且支持在不同流程中自动继承银行卡信息;系统会根据语义而非传统的噪声打断,不易造成误触发。最后,系统可以根据不同时间段播报不同的问候语。

  src=文本机器人。思必驰文本机器人可定制知识问答,支持上千个知识问答对,内置闲聊、天气、百科等通用机器人技能,且覆盖多种不同的接入模式,如API、H5等。支持图片、文档、视频等类型回复,更加直观立体。

  除此,思必驰结合银行客户特点,通过改造线下柜机,将语音识别嵌入柜机中,打造了智能柜机系统,支持方言语音识别,操作更便捷,更加满足老年人等客群的特有需求。

  为提高服务水平,满足质检需求,思必驰为该行呼叫中心提供了线上语音质检服务。

  质检机器人基于思必驰强大的语音中台,将录音对话转换为文本,使其成为可搜集、抽取、归类和索引的结构化信息,通过对员工的综合素质评估和服务质量打分,实现了服务的精细化、标准化。

  除线上质检外,通过打造软硬一体化解决方案,思必驰还可提供线下质检服务,并应用于线下网点、大厅等服务场景,打通服务全流程。

  思必驰为该行构建的全场景智能语音中台解决方案,价值主要体现在以下几个方面:

  第一,提高外部用户体验。基于方言识别技术的普通话和重庆方言自适应模型,能够在语音服务时自动识别普通话和重庆地方方言,思必驰在金融领域的川渝方言识别率已达到了97%,大大提升了当地偏远地区、偏好重庆方言客户的金融可得性,满足不同客户使用需求。全渠道智能客服覆盖多场景、多渠道,问答成功率超80%,有效提升用户体验。而智能柜机简化操作,提升了老年人等客群的使用体验。

  第二,提升内部服务水平。通过利用质检机器人,该行实现了100%全量质检,且大大提升质检准确率。

  第三,降低运营成本,实现降本增效。创新性提出基于极深卷积神经网络的语音建模方法,并应用于包括语音识别,语音抗噪等多个领域,大幅度提升语音识别的准确率;创新性提出基于链接时序模型的语音识别高效解码方案,提升语音识别速度10倍以上,有效地减少了对计算资源的消耗。

  除IVR机器人、客服机器人、质检机器人外,思必驰的金融行业机器人在智能催收、智能回访、智能陪练等场景亦有成熟应用与落地案例。

  思必驰为某银行客户提供的陪练机器人,通过模拟真实销售场景,帮助新人坐席进行实战演练,锻炼坐席心理素质、提升坐席专业知识。模块可对坐席进行话术通关考试,自动检测评估坐席话术应用水平,辅助判断坐席是否具备上岗条件。通过培-测-评一体的智能陪练服务,高效助力企业员工快速适应岗位需求,实现绩效提升。在首批试点的10个地区中,考核优秀人数占比超80%,成交客户数环比增长2倍,销售额同比增长40%。

  凭借规模化定制能力、全链路智能语音语言技术、高效的标注训练一体化平台、启发式对话管理技术,思必驰的机器人从最初的填槽式对话,发展到现如今的全领域对话,在一个全场景机器人中能支持500+意图识别,并根据用户意图进行服务跟进,可以与用户进行10轮以上对话,并且支持语义打断、澄清等功能,多方位多角度助力金融行业客户完成服务升级。

  随着客户旅程的数字化渗透和技术创新的不断突破,前后台直通式、自动化作业处理将成为重要方向。服务交付层将逐步转变为智慧工厂,在风控合规的基础上,实现作业处理的高度自动化,操作尽量由系统自动完成。

  流程自动化的方向是将机器流程自动化(Robotics Process Automation,简称RPA)技术应用于银行运营流程。目前,大部分区域性银行已经部署或正在着手部署RPA,根据访谈结果判断,RPA对于运营效率的提升效果明显,在数字化方案中价值最为明确。

  比如,苏州银行于2019年多业务部署RPA,应用场景覆盖办公室、金融市场部和运营管理部。应用效果显著,以金融市场部场景为例,使用RPA机器人完成从委外证券估值表的证券简称到证券风险预警系统中债券代码的录入,避免跨系统手工操作,每天可节省150分钟。

  未来,引入人工智能、深度学习、事件驱动的软件等技术和数字化工具,RPA将继续代替人工,渗透更多的银行业务;同时,在运用流程银行改革基础,进一步增强运营支持能力,将流程和基础运营能力升级为标准化共享服务能力,通过流程服务和基础服务的共享化与平台化,建立全行端到端的业务流程能力,将各个渠道、客户、服务合作平台、产品部门连接起来,成为创造价值的聚合体,同时避免平台、技术等重复建设和资源投入。

  比如,建设银行上线企业级RPA运营平台,以集中部署为主、分散部署为辅,将RPA的Server、Robot(Agent)进行集中部署,建立稳定、共享、可动态扩展的RPA机器人集群,实现RPA应用场景在全集团各机构的最大化复制和推广。截止2020年9月,RPA日均执行1.8万余次,运行成功率在95%以上,日均释放人力近3000个小时,产出投入比(ROI)约为51.45。

  作为信息安全中最为重要的部分,数据安全是银行数字化转型中极为重要的保障支撑,是区域性银行数字化转型过程中不得不关注的部分。随着区域性银行数字化转型进程的不断推进,线上化非接触业务不断深化,给区域性银行的数据安全带来了极大的挑战。

  数据形式多样,存在安全风险。由于分支机构多、业务条线多、部门多,银行内部数据量大且形式多样,缺乏统一的数据标准,数据的真实性与数据的实用性都会大打折扣。此外,外部数据繁杂,标准不定,与内部数据界限不清。这使得区域性银行在使用内外部数据时,缺乏快速响应与抵御安全风险的能力。

  缺乏安全保障,泄露风险显著。数据生产结束后便会进入流转环节,银行数据流转范围广,几乎涉及所有业务部门与职能部门。随着数字化转型的推进,网络银行等线上业务平台越来越受欢迎,数据泄露风险也越来越显著。另外,区域性银行由于缺乏金融科技人才且资金不足,数字化转型多依赖外部服务商,而这种外包模式很容易造成操作风险,导致数据泄露。

  安全体系不足,难以应对攻击。随着互联网的发展,多种新型攻击手段不断产生。区域性银行防御体系注重单点防御,无法预警与应对更高层次的新型攻击,成为了新型攻击的最主要攻击目标之一。

  作为银行数字化转型进程中的重要因素,同时也是战略规划中不可或缺因素,数据安全应该被纳入区域性银行数字化转型的战略目标。区域性银行应该着眼全局,建立统一数据标准、注重安全合规,构建全面的安全防护体系。

  制定统一的内外数据标准,提升数据质量。数据质量是数据安全的基础,数据安全离不开良好的数据质量的支撑。因此,建立全面的数据安全防护体系,最基本的是需要制定统一的内外部数据标准。首先,区域性银行要做好行内数据标准制度的建设,实现各部门的数据标准统一,保证数据质量,从而便于各部门间数据有效联动,为数据风险的防范提供基础。其次,区域性银行要明确数据治理的组织权责划分,在各部门间建立良好的协调机制与考评体系,从全局角度上提升数据质量,从而有充足的准备应对未知的安全风险。如宁波银行通过客户数据标准化、标签化、颗粒化,提升了数据质量。

  注重基于安全合规的管理,防止数据泄露。随着银行数字化转型的不断深入,数据流转越来越普遍,数据越来越成为银行的核心竞争力。银行在基于大量数据创新金融模式时,应充分考虑数据的安全合规。对外,一方面事前对数据进行脱敏处理,防止第三方人员接触到真实数据;另一方面,制定数据治理制度,对外部数字化转型服务商的职责与权限进行明确划分,从而规避第三方服务商因违规操作导致的风险。对内,成立或划分独立的数据安全部门和合规部门,对数据安全与合规进行整体管理,以在满足业务需求的同时控制安全风险。如宁波银行持续完善外包风险管理,进行外包需求准入审核,开展外包业务风险评估和外包商服务质量评价。

  建立全面的安全防护体系,应对新型攻击。区域性银行应基于数据分级分类,建立涵盖事前、事中、事后全生命周期的数据安全防护体系——数据采集过程中,进行数据脱敏处理;数据传输过程中,进行安全检查;数据存储过程中,进行数据加密;数据使用过程中,践行数据检查与全程监控,保证数据使用过程的可溯源,从而全流程保障数据安全。如郑州银行本行根据自身条件和外部环境,通过建立有效措施,对信息科技风险进行识别、计量、监测、控制和报告,建立了全面的数据安全防护体系,有效控制了信息科技风险。

  区域性银行数字化转型涉及大量业务创新与商业模式变革,需要银行以坚定的态度和必胜的决心,自上而下、系统性地进行全方位、多层次的数字化探索与实践。

  出于三方面因素考虑,区域型银行数字化转型必须由董事长、行长层级的一把手推动:

  第一,一把手对客户价值挖掘更为深刻,能够站在更为全局的角度看待客户价值,从而能够为区域性银行营销及运营数字化转型提供一些经验支撑;

  第二,区域性银行数字化转型受到资金、人才等资源的制约,如何将有限的资源合理高效地分配到各个部门、各类业务中去,把握不同业务数字化转型的顺序与进程,是区域性银行数字化转型必须考虑的重点。而仅依靠CIO或者科技小组去做项目的推动和执行,会面临各业务部门需求不同、无法把握全局的问题,无法实现资源的最优配置与进程及顺序的最优安排。仅依靠业务部门推进转型,则无法有效与其他业务部门协作,很容易陷入僵局或者出现重复建设的后果。只有一把手能够跳出部门业务的思维困局,以更为战略化、企业化的长远目光,重构新的业务流程;

  第三,银行数字化转型一定涉及到组织架构的调整优化,只有一把手能深刻理解银行组织架构的痛点,有效且高效地完成人员的优化与组织架构的转型。

  第四,数字化转型中,银行员工需要有较为专业的转型认知、坚定的信心与坚决的态度,而只有一把手决策层的数字化思维能够有效影响到员工的数字化转型认知与转型决心。

  因此,区域性银行数字化转型不仅是后台或者前台某一部分的转型,是一项从管理到业务的全方位变革,必须从顶层设计出发、由一把手负责,才能真正全方位推动项目运行。

  具体而言,区域型银行一把手要通过培训等方式建立数字化思维、强化数字化认知,并且以积极向上的态度面对数字化转型;一把手要立足全局,从银行长远战略层面出发,敲定全行整体的战略转型规划,自上而下推行数字化转型,并且一把手要对转型的成败承担最终的责任;数字化转型推行过程中,如果出现不可预料的问题,需要由一把手判断转型路径与转型手段的正确性,并作出相应调整。例如重庆银行专门成立了由董事长亲自挂帅的数字化创新工作领导小组,将数字化建设提升到最高略层级。

  扁平化结构建设,实现跨部门高效协同。区域性银行在进行数字化转型的过程中,需要采用扁平化结构,打通各个部门之间的沟通渠道,降低各部门间的沟通成本,从而实现跨业务、跨部门的高效协同。如长沙银行根据行业形势、业务需要和客户诉求,构建起了组织架构、管理队伍的动态调整机制,全面推进扁平化管理,持续做好流程优化,全面提升了内部运转效能。

  成立敏捷转型工作小组,助力数字化转型。区域性银行在数字化项目建设中,可以成立敏捷转型工作小组,从顶层出发,指导区域性银行数字化转型。

  src=数字化领导小组是由行内管理层组建的高层级领导组织,一般由党委书记或董事长出任小组组长,下设执行办公室,由执行办公室负责具体的拆分工作,落实小组的整体的思路和规划。但这种方式要求下级部门能对执行办公室的想法有效理解和落地,部门之间的沟通和协调工作较重。如恒丰银行成立了数字化敏捷转型工作领导小组,由恒丰银行党委书记、董事长出任组长,下设一院两办,共同助力区域性银行数字化转型。

  成立独立的数字银行部,承接数字化转型。除了设立敏捷小组,配合数字化转型外,区域性银行也可以成立数字银行部,进行全行数字化转型的统筹规划。数字银行部以独立的数字化部门形式设立,与行内管理层制定统一的数字化转型规划,可以全面承接行内数字化转型工作,并且牵头研究和实施行内数字化项目。在人员调配上,数字银行部由行内优秀的业务、技术人员共同组成,是一套既懂技术又懂业务的班子。该部门一般会在行内得到充分的授权,有较为充足的资源、资金。如南京银行、顺德农商行、张家港农商行等多数区域性银行均成立了数字银行部。在运行过程中,数字银行部也存在一定问题:在战略任务的拆解上,需要保证与高层的一致性;在战略的实施上,其他部门配合意愿低,在起初未见成效之前推动阻力大。虽然遇到各种问题,仍不能排除数字银行部是一个好的实施办法。

  创新文化。数字化转型之路即创新之路,转型离不开创新。只有在全行层面,推行创新文化,形成敢于创新的风气,才能驱使全行员工以更远的视野、更宽广的胸怀看待业务环境,从而为数字化转型树立信心。

  容错文化。银行的数字化转型离不开失败与错误,容错是创新的保障。银行员工应正确处理和对待科技创新中的失误与错误,建立完整的试错机制,对转型道路上的失败与错误给予一定的包容空间,为创新提供保障。

  中国银行业协会专职副会长潘光伟在第二届中国数字银行论坛上提到过,科技人才储备的不足是中国银行业进入数字化时代所面临的挑战。

  数字化时代对银行人才结构提出新要求。以中原银行的敏捷工作小组为数字化人才需求结构缩影,敏捷小组成员包括业务分析、市场营销、数据分析、系统开发、产品设计等多种角色人员。根据调研发现,大型区域性银行侧重数字化业务拓展,更为紧缺兼具业务理解和科技能力的数字化复合人才,包括业务分析、数据分析人才;而中型区域性银行尚处于数字化基础能力建设阶段,更为紧缺的为先进技术人员,比如人工智能、云计算等技术人员。

  数字化人才存在明显供需不匹配现象。根据猎聘数据,2020年金融行业数字人才需求整体处于增长态势,随着下半年经济复苏,9月数字人才需求达到峰值,人才需求大于供给趋势,其中银行的需求量占比高于人才存量占比,需求更急迫;而且金融业数字人才主要分布在北上深等一线城市,杭州、成都等新一线城市紧随其后,人才区域分布的不平衡加剧区域性银行的人才短缺。

  相比高成本引进人才发展与保留更为重要。金融行业,尤其是银行业重视数字化人才,流入的薪酬涨幅普遍在30%以上,引入成本高。因而,在数字化人才结构性短缺的大背景下,有实力的大型区域性银行更需要逐步着手自身数字化人才发展体系的构建,发展与保留数字化人才;中型区域性银行可尝试与高校等研究机构进行合作,短期内可以与金融科技公司共建为主。

  数字化转型需要大量能够将数据分析与银行业务有效结合的复合型人才。为此,区域性银行需要重新建立人才能力模型,调整人才发展战略,创新人才培养机制,打造兼具业务能力、技术能力、数据分析能力的T型人才团队。

  根据调研判断,数字化转型所需人才技能可以划分为数字化领导力、数字化运营能力两个层次。对于区域性银行目前最为紧缺的数字化复合人才,能力模型应该包含深刻商业洞察、掌握数据分析、熟悉IT技术三个维度;对于先进技术性人才,能力模型应该包含擅长技术实现、熟悉业务模式两个维度。

  src=加速人才培养,一般而言区域性银行可以从人才结构、培养计划、人才管理机制三个层面重新审视人才发展体系构建,但具体的人才培养方案需根据银行自身情况而定。比如,长沙银行依托广州分行,成立广州研发部,方便在粤吸收金融科技人才,以广州分行特色业务研发为基础带动过本行湖南辖内的金融科技发展;同时以人才画像和能力地图为基础,建立符合现状的培训体系,提升金融科技人才队伍的整体能力。

  领先的区域性银行已经凭借数字化构建起业务竞争壁垒,更多的中长尾区域性银行切入数字化转型,银行数字化转型悄然进入下半场。放眼未来,数字化的趋势在哪里,区域性银行如何把握趋势保持竞争优势甚至实现弯道超车,是区域性银行思考的核心问题。

  我们认为,区域性银行首先要抓住三大趋势:一是深耕开放银行,寻找创新业务模式;二是建设敏捷银行,打造领先竞争优势;三是布局隐私计算,夯实银行合规基础。

  根据麦肯锡数据,全球已有30多个国家和地区在推进开放银行模式,覆盖的产品约占收入池的90%。随着开放银行模式的兴起以及相关监管政策的落地,开放银行也正成为国内银行发展的新趋势。

  开放银行是指银行开放自身服务与数据,通过数据聚合、产品创新等方式与同业合作伙伴合作,为客户提供金融+非金融场景下的金融服务,实现更广、更深、更精准客户触达的业态形式。

  在国内,四大行、股份制银行和头部城商行已经在积极尝试开放银行模式,但与英国、欧盟等开放银行先行者相比,国内开放银行仍处于探索初期,主要体现在:开放银行战略不清晰,导致场景生态无法落地;生态拓展并不完善,端到端客户运营能力不足;新型风控经验不足,缺乏场景定制化风控能力。相应地,未来的趋势方向为:更落地、更开放、更稳健。

  更落地。打造开放银行并没有标准模式,需要探索符合自身特点的模式。目前已有的开放银行模式有三种,业务驱动的生态圈模式,金融科技创新模式,金融业务服务平台化模式。未来区域性银行应基于清晰定义的目标,根据自身资源,聚焦一种模式,也可以形成多种模式组合。

  src=更开放。从场景生态层面,从B端、C场景为主到BCGF多元场景;从开放平台建设方面,从自主建设到共建/合作,对于中长尾区域性银行而言尤为重要;从数据共享层面,在满足监管要求的前提下,更开放的分享数据,进一步升级客户体验。

  更稳健。由于合作生态伙伴所处行业和面向客群都不尽相同,因此商业银行需要建立针对不同场景和生态伙伴的定制化风控模型能力,有效利用生态场景伙伴提供的客户非金融行为数据。此外,银行业务部门、战略部门、合规部门应紧密合作,渠道业务合规开展。

  敏捷诞生于互联网,在市场格局充满不确定性的时代,越来越多企业选择敏捷方式以赢得竞争。在敏捷化转型紧迫度方面,银行业与其他行业并无差异,银行敏捷化转型势在必行。

  银行业敏捷转型的成功经验显示,敏捷能够带来更高生产率、更优客户体验、更高企业价值、更快决策流程和更强员工认同。更多的区域性银行加入敏捷转型行列,比如中原银行在数字化转型过程中成立敏捷小组,同时更多的区域性银行引入低代码平台、建设DevOps能力等。

  银行敏捷能力建设包含五个维度,制定敏捷战略、建设敏捷组织、优化工作流程、动态人才管理以及敏捷技术能力建设,其中敏捷技术能力建设将是落地周期最短、价值最直观的投入。随着机器学习和人工智能成为银行数字化赋能的重要驱动力,模型开发过程中多学科专家在互动中会遇到许多组织难题和将技术障碍,效率与模型价值不及预期成为痛点。因而,我们认为,MLOps将是未来重要趋势。

  MLOps是一种方法论,将DevOps开发运维工具和方法应用于模型开发,以实现机器学习的产业化和规模化,加速整个模型的生命周期。

  src=基于MLOps可以快速交付模型,实现机器学习的产业化。借助自动化和标准化流程,MLOps可以加速试验和交付,助力企业将机器学习产业化。同时MLOps可以剔除模型专家个人偏好,以标准化的方式完成模型开发任务,提高配合效率。

  基于MLOps可以避免模型漂移,保证模型的专业度。MLOps在缩短模型研制周期的基础上,可实现利用实时数据建立模型,并可对模型进行监控,保证模型与不断变化的业务数据和客户数据保持同步,有效管理模型漂移产生的不确定与误差。

  数据正在成为企业最重要的资产,近年来数据安全时间频发造成重大损失,数据安全对于企业的重要性不言而喻。同时,随着有关数据安全和个人信息保护的相关法律法规的实施,数据安全风险正成为企业要解决的主要风险之一。

  对于区域性银行来说,业务数据涉及众多敏感信息,比如个人信息,因而一直以来行业数据安全措施完整有效,数据安全的核心风险点在于数据共享。随着业务上云、合作共建、开放银行等数字化创新业务的推进,数据共享的场景越来越多,意味着数据安全的风险趋高。

  同时保证数据流通共享与数据安全,打破数据价值释放的壁垒,隐私计算成为关键的技术解决方法,实现数据的可用不可见。

  src=根据大数据联合国全球工作组的定义,隐私计算是一类技术方案,在处理和分析计算数据的过程中能保持数据不透明、不泄漏、无法被计算方以及其他非授权方获取。隐私计算并不是一个通用型标准化产品/技术,数据使用相关方在数据共享及处理过程中以性能、精度及安全三大均衡因素为原则,根据业务场景的具体需求及相应的计算资源环境做出最适合的隐私算法选择及组合。

  src=先进银行已经着手布局隐私计算。以微众银行为例,针对小微企业贷款业务,存在风险过高、信息不对称等风控难题,需要更多的数据优化筛选规则和风险模型。应对小微企业贷款风控数据不足的问题,微众银行联合多家外部合作伙伴一起搭建基于联邦学习的风控模型。比如微众银行与发票信息服务公司共享客户标签、央行信贷特征、发票相关数据等,双方基于开源的联邦学习系统FATE进行纵向联邦建模,多个机构可以构建联合模型而无需共享其数据。

  数字经济时代,数字化转型成为新时代共识性战略。区域性银行所处的宏观环境、监管环境和内生发展需求正在发生重大变化,在业务增长与合规双重压力下,数字化转型成为区域性银行放大资源优势实现弯道超车的重要着力点,得到区域性银行前所未有的重视。

  一直以来,受限于人才、资金、技术、进程等多方面资源限制,区域性银行数字化转型进展相对缓慢。在经济发展新常态下,区域性银行对转型资源投入显著增长,数字化转型步入快车道。同时,在强者恒强的情况下,区域性尤为关注差异化转型路径探索,凭借地域性优势资源,小步快跑,以数字化真正推动银行业务高质量增长。

  区域性银行数字化转型是一项长期战略性工程,数字化转型将会是区域性银行共同深入推进的主流方向。未来已至,区域性银行必须要把握住数字化转型的机遇期,构建起自身的数字化经营能力、服务能力和创新能力,在激烈的市场竞争中勇立潮头,探索出具有区域性银行特色的高质量规模增长之路。

  爱分析是中国领先的产业数字化研究与咨询机构,成立于中国数字化兴起之时,致力于成为决策者最值得信任的数字化智囊。凭借对新兴技术和应用的系统研究,对行业和场景的深刻洞见,爱分析为产业数字化大潮中的企业用户、厂商和投资机构,提供专业、客观、可靠的第三方研究与咨询服务,助力决策者洞察数字化趋势,拥抱数字化机会,引领中国产业数字化升级。

  此报告为爱分析制作,报告中文字、图片、表格著作权为爱分析所有,部分文字、图片、表格采集于公开信息,著作权为原著者所有。未经爱分析事先书面明文批准,任何组织和个人不得更改或以任何方式传送、复印或派发此报告的材料、内容及其复印本予任何其它人。

  此报告所载资料的来源及观点的出处皆被爱分析认为可靠,但爱分析不能担保其准确性或完整性,报告中的信息或所表达观点不构成投资建议,报告内容仅供参考。爱分析不对因使用此报告的材料而引致的损失而负上任何责任,除非法律法规有明确规定。客户并不能仅依靠此报告而取代行使独立判断。

  注:点击左下角阅读原文,下载完整版《2021爱分析·区域性银行数字化实践报告》。

推荐阅读

友情链接

...

haqcyp.com

宝博国际

关注我们

haqcyp.com 宝博国际